Zk-Magic Labeling of Snake Related Graphs

K. Jeya Daisy and L. Jesmalar

Department of Mathematics, Holy Cross College, Nagercoil, Tamilnadu, India.

ABSTRACT

For any non-trivial abelian group A under addition a graph G is said to be A-magic if there exists a labeling $f: E(G) \to A - \{0\}$ such that, the vertex labeling f: defined as $f: (v) = \sum f(uv)$ taken over all edges uv incident at vis a constant. An A-magic graph G is said to be Z_k -magic graph if the group A is Z_k the group of integers modulo k. These Z_k -magic graphs are referred to as k-magic graphs. In this paper we prove that the graphs such as triangular snake, double triangular snake, $T^2(T_n)$ and quadrilateral snakeare Z_k -magic graphs.

Keywords: A-magic labeling, Z_k-magic labeling, Z_k-magic graph.

AMS Subject Classification (2010): 05C78

1. Introduction

Graph labeling is currently an emerging area in the research of graph theory. A graph labeling is an assignment of integers to vertices or edges or both subject to certain conditions. A detailed survey was done by Gallian in [8]. If the labels of edges are distinct positive integers and for each vertex v the sum of the labels of all edges incident with v is the same for every vertex v in the given graph then the labeling is called a magic labeling. Sedlacek [11] introduced the concept of A-magic graphs. A graph with real-valued edge labeling such that distinct edges have distinct nonnegative labels and the sum of the labels of the edges incident to a particular vertex is same for all vertices. Low and Lee [10] examined the A-magic property of the resulting graph obtained from the product of two A-magic graphs. Shiu, Lam and Sun [12] proved that the product and composition of A-magic graphs were also A-magic. For any non-trivial abelian group A under addition a graph G is said to be A-magic if there exists a labeling $f: E(G) \rightarrow A^{-}\{0\}$ such that, the vertex labeling f^{+} defined as $f'(v) = \sum f(uv)$ taken over all edges uv incident at v is a constant. An A-magic graph G is said to be Z_k -magic graph if the group A is Z_k the group of integers modulo k. These Z_k -magic graphs are referred to as k-magic graphs. Shiu and Low [13] determined all positive integers k for which fans and wheels have a Zk-magic labeling with a magic constant 0. Kavitha and Thirusangu [9] obtained a Z_k -magic labeling of two cycles with a common vertex. Motivated by the concept of A-magic graph in [11] and the results in [10, 12, 13] Jeyanthi and Jeya Daisy [1-7] proved that some standard graphs admit Z_k-magic labeling. We use the following definitions in the subsequent section.

Definition 1.1 The triangular snake T_n is obtained from the path P_n by replacing each edge of the path by a triangle C_3 .

Definition 1.2 A double triangular snake DT_n consists of two triangular snakes that have a common path.

Definition 1.3 A quadrilateral snake Qn is obtained from a path Pn by replacing each edge of Pn by a cycle C₄.

Definition 1.4 Let G = (V,E) be a simple graph and G' = (V',E') be another copy of graph G. Join each vertex v of G to the corresponding vertex v' of G' by an edge. The new graph thus obtained is the 2- tuple graph of G. 2- tuple graph of G is denoted by T^{2} (G). Further if G = (p, q) then $V\{T^{2}(G)\} = 2p \text{ and } E\{T^{2}(G)\} = 2q+p.$

2 Zk-Magic Labeling of Snake Related Graphs

In this section we prove that the graphs such as triangular snake, double triangular snake, T²(T_n) and quadrilateral snake are Z_k-magic graphs.

Theorem 2.1

The triangular snake T_n is Z_k magic for all $n \ge 2$.

Proof:

Let the vertex set of T_n be $V(T_n) = \{v_i / 1 \le i \le n\} \cup \{u_i / 1 \le i \le n - 1\}$ and the edge set be $E(T_n) = \{v_i v_{i+1} / 1 \le i \le n-1\} \cup \{u_i v_{i+1} / 1 \le i \le n-1\} \cup \{v_i u_i / 1 \le i \le n-1\}$

We consider the following two cases.

Case (i): n is odd.

For any integer 'a' such that k > a.

Define the edge labeling $f: E(T_n) \to Z_k - \{0\}$ as follows:

$$f(v_i v_{i+1}) = \begin{cases} a & \text{for i is odd} \\ k-a & \text{for i is even} \end{cases}$$

$$f(v_i u_i) = k - a \text{ for } 1 \le i \le n - 1$$

$$f(u_i v_{i+1}) = a$$
 for $1 \le i \le n-1$.
Then the induced vertex labeling $f^+: V(T_n) \to Z_k$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(T_n)$.

Case (ii): n is even.

For any integer 'a' such that k > 2a.

Define the edge labeling $f: E(T_n) \to Z_k - \{0\}$ as follows:

Define the edge factoring
$$f(v_i v_{i+1}) = \begin{cases} a & \text{for } i \text{ is odd} \\ k-a & \text{for } i \text{ is even} \end{cases}$$

$$f(v_i u_i) = a \text{ for } 1 \le i \le n-1$$

$$f(u_iv_{i+1}) = a \text{ for } 1 \le i \le n-1.$$

Then the induced vertex labeling $f^+: V(T_n) \to Z_k$ is $f^+(v) \equiv 2a \pmod{k}$ for all $v \in V(T_n)$ Thus triangular snake T_n is Z_k magic for all $n \ge 2$.

Examples of Z₇-magic labeling of T₅ and Z₄-magic labeling of T₆ are shown in Figure 1.

Figure 1

Theorem 2

The Double triangular snake DT_n is Z_k magic when n is odd.

Let the vertex set of DT_n be $V(DT_n) = \{v_i / 1 \le i \le n\} \cup \{u_i, w_i / 1 \le i \le n-1\}$ and the objective vertex set of DT_n be $V(DT_n) = \{v_i / 1 \le i \le n\} \cup \{u_i, w_i / 1 \le i \le n-1\}$ and the objective vertex set of DT_n be $V(DT_n) = \{v_i / 1 \le i \le n\} \cup \{u_i, w_i / 1 \le i \le n-1\}$ and the objective vertex set of DT_n be $V(DT_n) = \{v_i / 1 \le i \le n\}$. Proof: set be $E(DT_n) = \{v_i v_{i+1} / 1 \le i \le n-1\} \cup \{u_i v_{i+1}, w_i v_{i+1} / 1 \le i \le n-1\} \cup \{v_i u_i, v_i w_i / 1 \le i \le n-1\}$

For any integer 'a' such that k > 2a.

Define the edge labeling $f: E(DT_n) \to Z_k - \{0\}$ as follows:

Define the edge
$$i$$
 and $f(v_iv_{i+1}) = \begin{cases} 2a & for \ i \ is \ odd \\ k-2a & for \ i \ is \ even \end{cases}$

$$f(v_iu_i) = k-a & for \ 1 \le i \le n-1$$

$$f(v_iw_i) = k-a & for \ 1 \le i \le n-1$$

$$f(w_iv_{i+1}) = a & for \ 1 \le i \le n-1$$

$$f(u_iv_{i+1}) = a & for \ 1 \le i \le n-1.$$

$$f(u_iv_{i+1}) = a & for \ 1 \le i \le n-1.$$
Then the induced vertex labeling $f^+: V(DT_n) \to Z_k$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(DT_n)$.

Thus the double triangular snake DT_n is Z_k magic when n is odd.

Thus the double triangular snake DT_n is Z_k magic when DT_n is DT_n

Thus the double triangular snake DT_n is Z_k magic when n is odd. An example of \mathbb{Z}_7 -magic labeling of DT_5 is shown in Figure 2.

Figure 2 Z_7 -magic labeling of DT_5

Theorem 3

The 2-tuple graph of triangular snake $T^2(T_n)$ is Z_k magic for all $n \ge 2$.

Proof:

Let the vertex set of $T^2(T_n)$ be $V(T^2(T_n)) = \{v_i, v_i'/1 \le i \le n\} \cup \{u_i, u_i'/1 \le i \le n-1\}$ and the edge set be

 $E(T^2(T_n)) = \{v_i v_{i+1}, v_i' v_{i+1}', v_i u_i, v_i' u_i', u_i u_{n-i}' / 1 \le i \le n-1\} \cup \{u_i v_{i+1}, u_i' v_{i+1}' / 1 \le i \le n-1\} \cup \{v_i v_{n-i+1}' / 1 \le i \le n\}.$ For any integer a such that k > 4a.

Define the edge labeling $f: E(T^2(T_n)) \to Z_k - \{0\}$ as follows:

$$f(v_i v_{i+1}) = f(v_i' v_{i+1}') = k - a \text{ for } 1 \le i \le n - 1$$

$$f(v_i u_i) = f(v_i' u_i') = k - a \text{ for } 1 \le i \le n - 1$$

$$f(u_i v_{i+1}) = f(u_i' v_{i+1}') = k - a \text{ for } 1 \le i \le n - 1$$

$$f(v_1v_n') = f(v_nv_1') = 2a$$

$$f(v_i v'_{n-i+1}) = 4a \text{ for } 2 \le i \le n-1$$

$$f(u_i u'_{n-i}) = 2a \text{ for } 1 \le i \le n-1.$$

Then the induced vertex labeling $f^+:V(T^2(T_n))\to Z_k$ is $f^+(v)\equiv 0\pmod k$ for all $v\in V(T^2(T_n))$. Thus the 2-tuple graph of triangular snake $T^2(T_n)$ is Z_k magic for all $n\geq 2$.

An example of \mathbb{Z}_8 -magic labeling of $\mathbb{T}^2(T_3)$ is shown in Figure 3.

Figure 3 Z_8 -magic labeling of $T^2(T_3)$

Theorem 2.4

The quadrilateral snake Q_n is Z_k magic for all $n \ge 2$.

Proof:

Let the vertex set of Q_n be $V(Q_n) = \{v_i / 1 \le i \le n\} \cup \{u_i / 1 \le i \le n-1\} \cup \{w_i / 1 \le i \le n-1\}$

and the edge set be

and the edge set be
$$E(Q_n) = \left\{ v_i v_{i+1} / 1 \le i \le n-1 \right\} \cup \left\{ w_i v_{i+1} / 1 \le i \le n-1 \right\} \cup \left\{ v_i u_i, \ u_i w_i / 1 \le i \le n-1 \right\}$$

For any integer a such that k > a.

Define the edge labeling $f: E(Q_n) \to Z_k - \{0\}$ as follows:

$$f(v_{i}v_{i+1}) = \begin{cases} k-a & \text{for i is odd} \\ a & \text{for i is even} \end{cases}$$

$$f(u_{i}w_{i}) = \begin{cases} k-a & \text{for i is odd} \\ a & \text{for i is even} \end{cases}$$

$$f(u_{i}v_{i}) = \begin{cases} a & \text{for i is odd} \\ k-a & \text{for i is even} \end{cases}$$

$$f(w_{i}v_{i+1}) = \begin{cases} a & \text{for i is odd} \\ k-a & \text{for i is even} \end{cases}$$

Then the induced vertex labeling $f^+:V(Q_n)\to Z_k$ is $f^+(v)\equiv 0 \pmod{k}$ for all $v\in V(Q_n)$.

Thus the quadrilateral snake Q_n is Z_k magic for all $n \ge 2$.

An example of a Z₅-magic labeling of Q₄ is shown in Figure 4.

Figure 4 Z_5 -magic labeling of Q_4

References

- 1. P. Jeyanthi and K. Jeya Daisy, Z_k-magic labeling of subdivision graphs, Discrete Math. Algorithm. Appl., 8(3), (2016), 19 pages, DOI: 10.1142/S1793830916500464.
- 2. P. Jeyanthi and K. Jeya Daisy, Z_k-magic labeling of open star of graphs, Bull. Inter. Math. virtual Inst., 7 (2017), 243-255.

- 3. P. Jeyanthi and K. Jeya Daisy, Certain classes of Z_k-magic graphs, J. Graph Labeling, 4(1), (2018), 38–47.
- 4. P. Jeyanthi and K. Jeya Daisy, Z_k -magic labeling of some families of graphs, J. Algorithm Comput., 50(2), (2018), 1–12.
- 5. P. Jeyanthi and K. Jeya Daisy, Z_k-magic labeling of cycle of graphs, Int. J. Math. Combin.,1,(2019), 88-102.
- P. Jeyanthi and K. Jeya Daisy, Some results on Z_k-magic labeling, Palestine J. Math., 8(2), (2019), 400-412.
- P. Jeyanthi and K. Jeya Daisy, Z_k-magic labeling of path union of graphs, CUBO A Mathematical Journal, 21(2),(2019), 15-40.
- 8. J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 2018.
- K. Kavitha and K. Thirusangu, Group magic labeling of cycles with a common vertex, International Journal of Computing Algorithm, 2, (2013), 239–242.
- 10. R.M. Low and S.M Lee, On the products of group-magic graphs, Australas. J. Combin., 34,(2006), 41-48.
- 11. J. Sedlacek, On magic graphs, Math. Slov., 26, (1976), 329-335.
- 12. W.C. Shiu, P.C.B. Lam and P.K. Sun, Construction of magic graphs and some A-magic graphs with A of even order, Congr. Numer., 167, (2004), 97-107.
- 13. W.C. Shiu and R.M. Low, Zk-magic labeling of fans and wheels with magic-value zero, Australas. J. Combin., 45 (2009), 309-316.